Los números racionales también podían ser expresados, pero sólo como sumas de [[fracción unitaria|fracciones unitarias]], con la unidad por numerador, excepto para 2/3 y 3/4. El indicativo de fracción es representado por el jeroglífico de la boca ('''R'''), y significa "parte":
Los números racionales también podían ser expresados, pero sólo como sumas de [[fracción unitaria|fracciones unitarias]], con la unidad por numerador, excepto para 2/3 y 3/4. El indicativo de fracción es representado por el jeroglífico de la boca ('''R'''), y significa "parte":
Revisión del 21:38 2 sep 2009
El sistema de numeración egipcio permitía representar números, desde el uno hasta millones, desde el inicio de la escritura jeroglífica. A principios del tercer milenio a. C. los egipcios disponían del primer sistema desarrollado de numeración de base 10. Aunque no era un sistema posicional, permitía el uso de grandes números y también describir pequeñas cantidades en forma de fracciones unitarias: las fracciones del Ojo de Horus.
Escritura de los números
En el Antiguo Egipto se podían representar las cifras con números o palabras (fonéticamente): como "30" o "treinta".
La representación fonética del número treinta, sería:
mientras que la expresión numérica de 30, era:
Sin embargo no era muy común la representación de voz, con la excepción de los números uno y dos.
Números cardinales
Los siguientes signos jeroglíficos eran usados para representar las diferentes potencias de diez en la escritura de izquierda a derecha.
Los demás valores se expresaban con la repetición del símbolo, el número de veces que fuera necesario. Por ejemplo, el bajorrelieve de Karnak, que habla del botín de Thutmose III (siglo XV a. C.) (Museo del Louvre, París), muestra el número 4622 como:
Está escrito de izquierda a derecha y de arriba a abajo pero en el grabado original en piedra están de derecha a izquierda y los signos están invertidos (los signos jeroglíficos podían ser escritos en ambas direcciones, de derecha a izquierda o de izquierda a derecha, incluso verticalmente).
Números ordinales
Para escribir los números ordinales los egipcios utilizaron tres formas diferentes:
Indicaban el número ordinal: primero, mediante el jeroglífico tpy
Para escribir los números ordinales: segundo a noveno, usaban los números cardinales, añadiendo el sufijo nu:
Los números ordinales décimo en adelante, se indicaban mediante el participio del verbo llenar: mḥt
, según Lumpkin.[1] El escriba utiliza el signo hierático nfr para referirse al “resto cero” de la operación aritmética de sustracción.
Lumpkin pone claramente en relación directa el signo nfr de este papiro con ciertas anotaciones arquitectónicas egipcias que harían referencia al nivel cero de la construcción, corroborando de este modo la traducción “cero”.[2]
Esta idea había sido ya sugerida con anterioridad por Faulkner, y también por Allen pero con el significando de “vaciado”.
La escritura hierática
En contra de lo que pueda parecer, la escritura jeroglífica de los números apenas fue empleada en la vida diaria. Como la mayor parte de los textos administrativos y contables estaban escritos en papiro o en ostraca en vez de grabarse en piedra (como si fueran textos jeroglíficos), la gran mayoría de los textos que empleaban el sistema numeral egipcio utilizaban la notación hierática. Se pueden encontrar muestras de numerales escritos en hierático desde el periodo arcaico. Los papiros de Abusir, datados durante el Imperio Antiguo de Egipto, son un conjunto importante de textos que utilizan numerales hieráticos.
Se observa que la notación hierática emplea un sistema numérico diferente, utilizando signos para los números del 1 al 9, para decenas (múltiplos de diez, del 10 al 90), centenas (del 100 al 900) y millares (del mil al nueve mil). Un número grande, como 9999, se podría escribir empleando este sistema con sólo cuatro signos, combinando los signos de 9000, 900, 90 y 9, en vez de usar los 36 jeroglíficos.
Esta diferencia es más aparente que real ya que estos "signos individuales" eran realmente simples ligaduras En los más antiguos textos hieráticos los números individuales están escritos de forma clara, pero durante el Imperio Antiguo se desarrollaba una serie de escrituras para grupos de signos que contuvieran más de un numeral. Como la escritura hierática seguía desarrollándose con el tiempo, estos grupos de signos se simplificaron para agilizar la escritura, hasta llegar a la escritura demótica. De cualquier forma, es incorrecto hablar de estas ligaduras como un sistema numérico distinto, como sería también incorrecto hablar de un diferente alfabeto comparando textos jeroglíficos con ligaduras hieráticas, ya que estos "signos individuales" eran realmente simples ligaduras.
Desde el tercer milenio a. C. los egipcios usaron un sistema de escribir los números en base diez utilizando los jeroglíficos de la figura para representar los distintos órdenes de unidades.
Se usaban tantos de cada uno cómo fuera necesario y se podían escribir indistintamente de izquierda a derecha, al revés o de arriba abajo, cambiando la orientación de las figuras según el caso. Al ser indiferente el orden se escribían a veces según criterios estéticos, y solían ir acompañados de los jeroglíficos correspondientes al tipo de objeto (animales, prisioneros, vasijas etc.) cuyo número indicaban. En la figura aparece el 276 tal y como figura en una estela en Karnak.
Estos signos fueron utilizados hasta la incorporación de Egipto al imperio romano. Pero su uso quedó reservado a las inscripciones monumentales, en el uso diario fue sustituido por la escritura hierática y demótica, formas más simples que permitían mayor rapidez y comodidad a los escribas
Los números racionales también podían ser expresados, pero sólo como sumas de fracciones unitarias, con la unidad por numerador, excepto para 2/3 y 3/4. El indicativo de fracción es representado por el jeroglífico de la boca (R), y significa "parte":
Las fracciones se escribían con este operador, p.e. el numerador 1, y el denominador positivo debajo. Así, 1/3 se escribía:
Había signos especiales para 1/2, para 2/3 (de uso frecuente) y 3/4 (de uso menos frecuente):
(2)
Si el "denominador" era muy grande y el signo de la "boca" no cabía encima, esta se situaba justo encima del comienzo del "denominador".
Aparte de 2/3 y 3/4 los egipcios no conocían fracciones con numerador distinto a uno. Por ejemplo, la fracción 3/5 se representaba como 1/2 + 1/10 y similar a este ejemplo se descomponían todas las fracciones como suma de fracciones con la unidad como numerador.