De Wikipedia, la enciclopedia libre
Gráficos de las funciones theta de Neville
En matemáticas, las funciones theta de Neville , que llevan el nombre del matemático británico Eric Harold Neville (1889-1961),[ 1] se definen de la siguiente manera:[ 2] [ 3]
[ 4]
θ
c
(
z
,
m
)
=
2
π
q
(
m
)
1
/
4
m
1
/
4
K
(
m
)
∑
k
=
0
∞
(
q
(
m
)
)
k
(
k
+
1
)
cos
(
(
2
k
+
1
)
π
z
2
K
(
m
)
)
{\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}
θ
d
(
z
,
m
)
=
2
π
2
K
(
m
)
(
1
+
2
∑
k
=
1
∞
(
q
(
m
)
)
k
2
cos
(
π
z
k
K
(
m
)
)
)
{\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
θ
n
(
z
,
m
)
=
2
π
2
(
1
−
m
)
1
/
4
K
(
m
)
(
1
+
2
∑
k
=
1
∞
(
−
1
)
k
(
q
(
m
)
)
k
2
cos
(
π
z
k
K
(
m
)
)
)
{\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
θ
s
(
z
,
m
)
=
2
π
q
(
m
)
1
/
4
m
1
/
4
(
1
−
m
)
1
/
4
K
(
m
)
∑
k
=
0
∞
(
−
1
)
k
(
q
(
m
)
)
k
(
k
+
1
)
sin
(
(
2
k
+
1
)
π
z
2
K
(
m
)
)
{\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}
donde: K(m) es la integral elíptica completo del primer tipo,
K
′
(
m
)
=
K
(
1
−
m
)
{\displaystyle K'(m)=K(1-m)}
, y
q
(
m
)
=
e
−
π
K
′
(
m
)
/
K
(
m
)
{\displaystyle q(m)=e^{-\pi K'(m)/K(m)}}
es el nomo elíptico.
Téngase en cuenta que las funciones θp (z,m) a veces se definen en términos del nombre q(m) y se escriben θp (z,q) (por ejemplo, NIST[ 5] ). Las funciones también pueden escribirse en términos del parámetro τ , con el valor θp (z|τ) donde
q
=
e
i
π
τ
{\displaystyle q=e^{i\pi \tau }}
.
Relación con otras funciones[ editar ]
Las funciones theta de Neville pueden expresarse en términos de las funciones theta de Jacobi[ 5]
θ
s
(
z
|
τ
)
=
θ
3
2
(
0
|
τ
)
θ
1
(
z
′
|
τ
)
/
θ
1
′
(
0
|
τ
)
{\displaystyle \theta _{s}(z|\tau )=\theta _{3}^{2}(0|\tau )\theta _{1}(z'|\tau )/\theta '_{1}(0|\tau )}
θ
c
(
z
|
τ
)
=
θ
2
(
z
′
|
τ
)
/
θ
2
(
0
|
τ
)
{\displaystyle \theta _{c}(z|\tau )=\theta _{2}(z'|\tau )/\theta _{2}(0|\tau )}
θ
n
(
z
|
τ
)
=
θ
4
(
z
′
|
τ
)
/
θ
4
(
0
|
τ
)
{\displaystyle \theta _{n}(z|\tau )=\theta _{4}(z'|\tau )/\theta _{4}(0|\tau )}
θ
d
(
z
|
τ
)
=
θ
3
(
z
′
|
τ
)
/
θ
3
(
0
|
τ
)
{\displaystyle \theta _{d}(z|\tau )=\theta _{3}(z'|\tau )/\theta _{3}(0|\tau )}
donde
z
′
=
z
/
θ
3
2
(
0
|
τ
)
{\displaystyle z'=z/\theta _{3}^{2}(0|\tau )}
.
También están relacionadas con las funciones elípticas de Jacobi . Si pq(u,m) es una función elíptica de Jacobi (p y q son uno de s,c,n,d), entonces
pq
(
u
,
m
)
=
θ
p
(
u
,
m
)
θ
q
(
u
,
m
)
.
{\displaystyle \operatorname {pq} (u,m)={\frac {\theta _{p}(u,m)}{\theta _{q}(u,m)}}.}
θ
c
(
2.5
,
0.3
)
≈
−
0.65900466676738154967
{\displaystyle \theta _{c}(2.5,0.3)\approx -0.65900466676738154967}
θ
d
(
2.5
,
0.3
)
≈
0.95182196661267561994
{\displaystyle \theta _{d}(2.5,0.3)\approx 0.95182196661267561994}
θ
n
(
2.5
,
0.3
)
≈
1.0526693354651613637
{\displaystyle \theta _{n}(2.5,0.3)\approx 1.0526693354651613637}
θ
s
(
2.5
,
0.3
)
≈
0.82086879524530400536
{\displaystyle \theta _{s}(2.5,0.3)\approx 0.82086879524530400536}
θ
c
(
z
,
m
)
=
θ
c
(
−
z
,
m
)
{\displaystyle \theta _{c}(z,m)=\theta _{c}(-z,m)}
θ
d
(
z
,
m
)
=
θ
d
(
−
z
,
m
)
{\displaystyle \theta _{d}(z,m)=\theta _{d}(-z,m)}
θ
n
(
z
,
m
)
=
θ
n
(
−
z
,
m
)
{\displaystyle \theta _{n}(z,m)=\theta _{n}(-z,m)}
θ
s
(
z
,
m
)
=
−
θ
s
(
−
z
,
m
)
{\displaystyle \theta _{s}(z,m)=-\theta _{s}(-z,m)}
Aplicaciones disponibles [ editar ]
NetvilleThetaC[z,m], NevilleThetaD[z,m], NevilleThetaN[z,m] y NevilleThetaS[z,m] son funciones integradas de Mathematica .[ 6]
Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications . ISBN 978-0-486-61272-0 . LCCN 64-60036. MR 0167642. LCCN 65-12253.
Neville, E. H. (Eric Harold) (1944). Jacobian Elliptic Functions . Oxford Clarendon Press.